Two Exterior Algebras for Orthogonal and Symplectic Quantum Groups
نویسنده
چکیده
Let Γ be one of the N-dimensional bicovariant first order differential calculi on the quantum groups Oq(N) or Spq(N), where q is not a root of unity. We show that the second antisymmetrizer exterior algebra sΓ ∧ is the quotient of the universal exterior algebra uΓ ∧ by the principal ideal generated by θ∧θ. Here θ denotes the unique up to scalars bi-invariant 1-form. Moreover θ∧θ is central in uΓ ∧ and uΓ ∧ is an inner differential calculus. AMS subject classification: 58B30, 81R50
منابع مشابه
Exactly solvable quantum spin ladders associated with the orthogonal and symplectic Lie algebras
We extend the results of spin ladder models associated with the Lie algebras su(2n) to the case of the orthogonal and symplectic algebras o(2n), sp(2n) where n is the number of legs for the system. Two classes of models are found whose symmetry, either orthogonal or symplectic, has an explicit n dependence. Integrability of these models is shown for an arbitrary coupling of XX type rung interac...
متن کاملSymplectic spreads, planar functions and mutually unbiased bases
In this paper we give explicit descriptions of complete sets of mutually unbiased bases (MUBs) and orthogonal decompositions of special Lie algebras sln(C) obtained from commutative and symplectic semifields, and from some other non-semifield symplectic spreads. Relations between various constructions are studied as well. We showed that automorphism groups of complete sets of MUBs and correspon...
متن کاملAffine and degenerate affine BMW algebras: Actions on tensor space
The affine and degenerate affine Birman-Murakami-Wenzl (BMW) algebras arise naturally in the context of Schur-Weyl duality for orthogonal and symplectic quantum groups and Lie algebras, respectively. Cyclotomic BMW algebras, affine and cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper we explain how the affine and degenerate affine BMW algebras are tantalizer...
متن کاملOrthogonal and Symplectic Quantum Matrix Algebras and Cayley-Hamilton Theorem for them
For families of orthogonal and symplectic types quantum matrix (QM-) algebras, we derive corresponding versions of the Cayley-Hamilton theorem. For a wider family of BirmanMurakami-Wenzl type QM-algebras, we investigate a structure of its characteristic subalgebra (the subalgebra in which the coefficients of characteristic polynomials take values). We define 3 sets of generating elements of the...
متن کاملAffine and degenerate affine BMW algebras: The center
The degenerate affine and affine BMW algebras arise naturally in the context of SchurWeyl duality for orthogonal and symplectic Lie algebras and quantum groups, respectively. Cyclotomic BMW algebras, affine Hecke algebras, cyclotomic Hecke algebras, and their degenerate versions are quotients. In this paper the theory is unified by treating the orthogonal and symplectic cases simultaneously; we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999